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Definitions 

Term Definition 

CLI Command line interface 

Continuous 

Integration  
automated process of running tests on every commit to the repository 

Demo Short for demonstration; this is one of the deliverables of the project: a 

demonstration of the quad’s capabilities, for example, doing a backflip 

with the quad, finding an object and following it, communicating with a 

second quad to perform flight patterns 

GPS Global Positioning System; space-based radio navigation system using 

satellites to determine position; proposed to find position (x, y) when 

not in the lab using the VRPN system 
Ground station The application that runs on a host computer that communicates with 

the quad via a Wi-Fi connection and sends it coordinates to the quad 
GUI Graphical user interface 

IR Infrared wavelengths of light longer than visible light; used in the VRPN 

system to determine the position of the quad 
LIDAR Light Detection and Ranging; this is a system for determining the 

altitude (z) of the quad using the onboard sensor 

Optical Flow system using pattern of motion of objects, surfaces, and edges caused by 

the relative motion between the and the scene to determine position; 

used by the quad to calculate position (x, y) when not in the lab using 

the VRPN system 

PID Proportional-integral-derivative control system; standard control 

algorithm used on the quad 
Quad Short for quadcopter; this is the hardware platform we use in this 

project 

Setpoint in a control system, the target value for an essential variable 
VRPN [1] Virtual-Reality Peripheral Network; this is the system used to determine 

the position (x, y, z) and orientation (φ,θ,ψ) of the quad in the lab using 

a set of 12 stationary cameras and an IR transmitter on the quad 
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1 Introduction 

Microprocessor Controlled Aerial Robotics Team or MicroCART project is centered around the 

development of a quadcopter (see Error! Reference source not found. below) and tracking s

ystem. This project has been in development since 1998 and the current system has been passed 

down since 2006. The project aims to create a stable and easy to use platform for researching 

control theory. The quadcopter flies primarily in the Distributed Sensing and Decision Making 

Laboratory within a twelve camera infrared tracking system. 

 

Figure 1-1 MicroCART quadcopter 
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 PROBLEM STATEMENT 

We will improve upon an existing platform that is used for research in controls and embedded 

systems and for departmental demos. The platform will be improved by adding increased, reusable 

testing of all systems, adding documentation to increase the speed for new users to get started, and 

by adding new system features. 

 Problem 

The MicroCART platform designed in previous years had many flaws that hindered its use for 

research and demo purposes. The previous platform failed to familiarize the user(s) of the system 

in a time horizon that would make it viable for research. This is because the system did not have 

ample documentation available for the users of the system to learn about the platform and its uses. 

From the viewpoint of a user running demos the area within the VRPN system the platform as it 

stood is most stable when confined to flying within the VRPN system as the optical flow navigation 

cannot hold position during flight. This means that the areas available to the quadcopter for demos 

can only utilize the small amount of space in the lab for a demo. Lastly, the quadcopter is 

controlled using a PID controller that requires logical guessing and checking to tune, we now have 

a new linear controller that can be computed faster and be tuned around multiple points on the 

nonlinear model. 

 OPERATIONAL ENVIRONMENT 

In order to fly using the VRPN software for position and orientation data, the quad must be inside 

of a small area (less than 10 m2) inside of Coover 3050. This lab is designed to cause very few 

environmental impacts on the quadcopter. Through the use of ventilation, window shades, and 

Coover’s heating and air conditioning, the lab has a nearly constant light and temperature with 

little to no accumulated dust to affect air quality.  

Additionally, the project relies on two Linux computers. One is used to control the ground station 

software and the other contains build tools for the FPGA on the quadcopter itself. This provides a 

platform for development that is consistent across team members and easier to demo as there are 

not issues with building or ensuring correctness of the various communication aspects used for the 

project. 

 INTENDED USERS AND USES 

The primary set of end users is composed of future MicroCART members and controls graduate 

students at Iowa State. We also have demonstrations for prospective students, someone from the 

two categories (the user) will be running the demo for them (the audience). This means that the 

users can be assumed to have competence in using multiple forms of programs (for example, either 

GUI or CLI) and in reading general technical documentation.  

The other goal listed above regards the modular implementation of new control algorithms as a 

research opportunity for graduate students. These users have three primary needs from our 

product. The first is a robust and reliable system to decrease variation in test results. This includes 

having sturdy quad hardware, low communication latency, and a bug-free user interface. The 

second need is to have modular software with complete documentation to allow for them to alter 

the implementation themselves, without the need for significant system rework or intervention of 

the MicroCART design team. Finally, these students will need the data from the system 
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characterization in order to form their models. This includes information about mass, moments of 

inertia, motor resistances, rotor areas, and many other properties that determine the true behavior 

of the quadcopter. There is also a need to make sure that any new features are documented clearly 

so that the next group of students that add features will be able to ramp up quickly. 

 

 ASSUMPTIONS AND LIMITATIONS 

 Assumptions 

● Our VRPN camera system as it exists provides sufficiently accurate position data 

● Our VRPN camera system as it exists provides sufficiently frequent updates 

● The quadcopter will be used within the camera system 

 Limitations 

● The quadcopter must use a wireless link to the ground station 

● Accuracy of onboard sensors (e.g. optical flow, LIDAR, IMU, GPS) 

● Latency and range of the wireless link between the quadcopter and the ground station 

● The quadcopter must be physically tethered to the lab floor 

 EXPECTED END PRODUCT AND DELIVERABLES 

The quadcopter system consists of three major subsections: the quadcopter hardware/software, the 

ground station, and the control systems. Each of the subsections is essential to meet the desired 

objectives and fulfill requirements. Documentation and demos are also a major deliverable for our 

project and will be discussed. 

 Quad Hardware and Software 

1.6.1.1 Vivado Upgrade Testing 

The entire quad software platform relies on the Xilinx toolchain. The software we were using to 

develop the Quad software is the Xilinx toolchain. Specifically, XPS, which is known to be a very 

non-user friendly and dated piece of software. One of the major goals of this project was to 

transition to the new and improved Vivado to program the FPGA hardware.  In addition, we added 

unit tests for the hardware modules in simulation as part of our continuous integration pipeline. 

1.6.1.2 Second Quad 

Our client advisor requested that we develop a second quad for available flight.  The difficulties in 

building a second quad revolve around the lack of documentation of parts used on the quad, along 

with the availability of the previous generation of parts.  The new quad needed to be able to run the 

same software on a different set of hardware. 
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Table 1-1 Parts Order for second Quad 

1.6.1.3 Quad Hardware Upgrade 

The client has requested we upgrade the quads to the latest Zybo board that includes a 

connection for a pi camera. The current quads have many long wires and loose 

connections that are potential points of failure. Our team will create a custom pcb board 

to replace those connections, as well as install the newer zybo boards. 

1.6.1.4 Quad Software Upgrade 

Currently the quad can only fly reliably within the VRPN Camera system. By integrating 

the GPS and improving controls, a quad that will reliably fly outside will be aimed for. The 

improved communication and multi-client capability developed last year opens up the 

possibility of networking and quad coordination. To take advantage of the newer zybo 

boards and cameras the client requested, a version of Linux with OpenCV, to be run on 

the second processor on the board, will be explored. Software surrounding these new 

functionalities will be developed.  

1.6.1.5 Power Regulator PCB Board 

The PCB will monitor battery usage and make sure that the user is alerted when battery 

power is low, and that the quad lands whenever battery power is too low. It will also make 
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sure the battery usage is efficient as possible, and no more power than necessary is drawn 

when the quad is idle. 

1.6.1.6 Sensor Data Sent in Real Time 

Because the quad now uses Wi-Fi instead of Bluetooth, it is possible to explore sending 

sensor data in real time rather than logging sensor data and sending it after the quad 

lands. The user should explain what type of data they want even during mid-flight, and 

the quad should be able to send that data back to the ground station immediately. 

 Ground Station 

1.6.2.1 Transmission of Flight Data in Real Time - Prototype by January 1, 2019. Final by May 1, 

2019 

The communication standard currently setup between the Ground Station and the quad supports 

the transmission of flight data and performance information after a flight has completed. Due to 

the amount of information being transferred, this process usually takes a considerable amount of 

time to complete. We would like to improve the communication occurring between the quad and 

the Ground Station to support the transmission of flight data in real time. This will improve the 

quad’s status as a research platform by allowing for easy and timely analysis of flight and controls 

data. 

1.6.2.2 Updated GUI for Flight Data Information - Prototype by January 1, 2019. Final by May 1, 

2019 

Currently, the GUI does not support displaying flight data to the user in real time as it arrives from 

the quad. The GUI will be updated to include a display for flight data that the user can see, as well 

as interact with to choose the types of data they wish to be seeing and recording. This will allow 

users to have a high level of control over the type and amount of data they are seeing during flight 

time. 

1.6.2.3 Multiple Object Interaction Capabilities - Prototype by March 1, 2019. Final by May 1, 2019 

Currently the ground station supports having multiple quads connected at the same time. In order 

to maintain a safe environment, both for observers and for the quads, the ground station will be 

improved to include position and orientation analysis for all connected quads in order to ensure 

collisions between objects connected to the ground station do not occur. This allows for a higher 

level of safety when conducting controls experiments involving multiple quads, as well as improve 

the expected lifetime of components and quads.  

 

 Controls Systems 

1.6.3.1 Model Linearization and LQR Controllers 

The primary deliverables of this year’s team were a modular linearization of the system model and a 

pair of LQR controllers. The linearization is a script that uses symbolic MATLAB derivation of the 

nonlinear model provided by Matt Rich in [1]. This allows a future user to change the nonlinear 
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model and immediately recompute the system linearization. Similarly, the linearization is also 

dynamic on the measured system parameters, so no further work needs to be done to account for 

potential future changes of physical properties (e.g. using bigger rotors or a frame with a greater 

mass). 

1.6.3.2 System Parameterization Instructions 

Because there are now two quadrotors, it is more important than ever to be able to measure and 

track the physical properties of each quadcopter. As such, the controls team aggregated parameter 

measurement procedures from both Rich’s [1] and McInerney’s [4] research, as well as from un-

versioned documentation from the previous year’s team. These were formed into a series of four 

parameter identification instruction documents, written in Markdown and stored on git, that 

contained straightforward instruction, consistent variable usage, and (where necessary) example 

MATLAB scripts. Additionally, a Markdown document was created to track all relevant parameter 

values and instruction sets. 

 Continuous Integration 

1.6.4.1 Quad Simulator 

The quad simulator models a virtual flight dynamics environment for various flight tests. The 

current established model in the simulator does not model rotor dynamics; however, it still offers a 

reliable platform for performing sanity checks of the changes in controls and quad software. The 

current simulator uses a slightly modified version of the actual quadcopter controls. The simulator 

also offers input and output through sockets which enables control to be running outside of the 

simulator. Our team will focus on improving the simulator model and integrating the simulator 

with the automated environment of GitLab. 

1.6.4.2 Upgrade Testing Framework 

Continuous Integration is the system that tests changes to code using the virtual quadcopter 

software. To make the tests more standardized and provide more flexibility in writing the tests, the 

tests were ported from a custom barebones testing framework to a standard testing framework, 

Unity [5]. This provides a fully developed set of testing functions that can be used by future teams. 

We plan to also increase test coverage and write tests for new features. 

1.6.4.3 Automated Testing for Controls Output 

We plan on creating a test that would gather information about the controls output in real time, 

then get the actuator data from the simulator and make sure that the two points match. 

 Documentation 

The year before, many areas of the code, especially those relating to ground station and quad 

software, were lacking documentation. The ground station contains four main components that are 

separated well but adding functionality was not explained nor is it mentioned that this is custom 

communication between the ground station and quad. The quad software is designed in a way that 

makes it so external directories must be used in build tools and there is also no explanation of the 

hardware running on the quad. Last year’s team made it their goal to have documentation for all 

existing demos, documentation consistent in all code, and documentation for the research done 

during their time on the team. To follow up on that goal, our team will continue adding 

documentation. This year, the areas of controls model and simulation, ground station, the CI 

Testing Framework, along with pure hardware plans need improvement and organization. 
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 Demos 

As one purpose of this project is to showcase the talents within this department, new demos 

needed to be developed to showcase yearly changes. These demos are performed to controls classes 

as well as to undergraduate students. We plan to implement the following major demos: 

1. Have a quad that tracks an object on the ground, or in air, and maintains a set distance 

away from it. 

2. Have multiple quads perform synchronous movements 

3. Have multiple types of quads running at the same time flying together. 
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2 Specifications and Analysis 

2.1 PROPOSED DESIGN 

 Overview 

At the highest level, the proposed system consists of three parts: the quadcopter, the ground-

station, and the camera-based object tracking system. The way these systems communicate is 

shown below. 

 

Figure 2-1 Top-level System Diagram 

Each of these systems is of course made of up various internal subsystems. The object tracking 

system is a black box, but the ground station and quadcopter are developed by the team. The object 

tracking system uses an array of infrared cameras to track markers on the quad’s frame, it then 

streams the position and orientation data to the ground station, which in turn distributes the 

useful elements to the quadcopter over a Wi-Fi link [2]. The quadcopter uses this data in 

combination with internal sensors and setpoints from the ground station to control its position, 

which the cameras can observe. 



 

SDMAY19-20     9 

 Quad Hardware and Software 

 

Figure 2-2 Quadcopter System Diagram 

The quadcopter is built from a Flamewheel 450 airframe, with a Zybo Z7020 control board. This 

board includes a Xilinx Zynq Z7020 FPGA. On board the quad are also a Wi-Fi bridge, an RC 

receiver, an optical flow sensor, a LIDAR sensor, and an Inertial Measurement Unit (IMU). The 

FPGA includes the hardware needed to interface to all of these devices, and to generate PWM to 

control the Electronic Speed Controllers (ESCs) for the motors. The hardware design for the FPGA 

is implemented in Xilinx Vivado. 

Within the FPGA, a processor core runs a baremetal (no operating system) program that runs a 

continuous loop: 

• Read Sensor Data 

• Process/Filter Sensor Data 

• Run Control Algorithm 

• Output Actuation 

• Log data 

Here, the input from the RC controller and the ground station are considered sensor values. The 

RC receiver has 6 channels, two of these channels are used for configuration (active/killed and 

manual/autonomous) and 4 are used in manual mode for piloting the craft. When in manual mode, 

the quad does not use any data from the ground station and uses only internal sensors to attempt 

to follow user commands (roll, pitch, yaw, throttle). In this mode, the quad will drift around the 

room at speeds dependent on the pilot, the calibrations of the sensors, and any air drafts in the 

room.  
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 Controls 

The controls for the quad are currently implemented using nested proportional-integral-derivative 

(PID) controllers. There is a set of PIDs for each of the three Cartesian components of position (x, 

y, z) and one for yaw (rotation around the z-axis). These were chosen because they achieve a very 

configurable approach to quadcopter controls, as modifications to the quad can be accounted for 

by simply adjusting the various PID constants. 

The problem with PID controllers is that they contain almost no information about the system 

physics, and once tuned to reasonable values control cannot be reliably improved except through 

modifying the coefficients by hand to meet qualitative judgements. The primary change we wanted 

was to create a controller based on a physical model of quadrotor actuation, which can serve as 

non-trivial starting point for future controls research on this platform. Specifically, the plan was to 

implement an LQR controller capable of flying the quad to prove the correctness of our model and 

its computed linearization. 

 Ground Station 

The overall architecture of the various components for the ground station will stay consistent but 

the network architecture, as well as backend functionality, will be improved. The ground station is 

currently well-designed allowing for a backend server, a frontend for clients to use for 

communication with the backend, and various clients such as the GUI or CLI (more details on each 

interface can be found later in the report). The benefits of the system as it stands is that the 

communication and server are kept with the backend so that clients do not need added complexity 

to deal with the different objects that are connected. The frontend provides a simple interface that 

clients can pass data to and get a response as needed. This again hides the backend implementation 

from the clients and this interface is simplified and provides all functionality that the quad and 

backend have to offer.   

The current communication standard for the MicroCART system allows for formatted packets to be 

sent between the ground station and the quad both during flight time for regular flight instructions 

as well as after flights for transmitting flight data logs. The ground station (and therefore, the quad) 

will be updated so that it will request and receive flight data during operation over the UART 

connection currently used to send instruction data. This information will then be formatted and 

displayed to the user on an updated GUI. The user will also be able to choose the type(s) of 

information they want the ground station to display. This change allows for a higher ease of use of 

the quad as a research platform as the types of data displayed will be determined by the user.  

The next major change involves the integration of safety features regarding the control of multiple 

objects into the backend. In addition to maintaining the individual position, velocity and 

orientation data of each of the trackables connected to the ground station, the ground station will 

also conduct additional checks to ensure dangerous scenarios such as collisions between quads do 

not occur. . This tracker will loop through all objects and provide them each with position 

information assuming they are using the VRPN system. This will also bring about changes in the 

GUI which will consist of a means of warning the user that dangerous conditions will/have 

occur/occurred. 
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 Continuous Integration 

The original Continuous Integration (CI) system ran a suite of tests that performed checks on parts 

of the quad software, using a set of sockets to simulate the drivers used on the quad. It relied on a 

basic testing framework, created by a previous team member, consisting of a single assert function. 

To address these limitations, we plan to add an additional part to the testing procedure to test the 

controls themselves. This would involve interfacing with a flight simulator and connecting the 

controls used on the quadcopter to the simulator, with the output of the simulator connected as 

inputs to the control model and the outputs of the control model connected to the inputs of the 

simulator to provide throttle levels to the motors of the quad in simulation. Automated tests that 

integrate with this simulator will also be made to test the ground station. In addition, we plan to 

replace the testing framework currently in use with a more powerful C testing library, Unity [5]. To 

do this we will work to convert the existing tests to use Unity.  

 Quad Software and Tests 

To improve debugging, we want to send sensor data and actuator results in real time. We are also 

giving the user the option to select which sensor data they want information from. The sensor data 

task has two parts : program the quad to send data in real time, and validate that the data has been 

sent quickly enough. The more sensor data that is sent, the more it will slow down the quad. To 

test how much sensor data can be sent at once, our approach is to log the latency and calculate it 

from there. As for sending the sensor data, we’ve tried two approaches: using the existing logging 

framework, and sending data using that framework, or just sending the sensor data directly right 

after data comes in, using the uart driver. Another possible approach is to create a thread that 

continuously polls the output from various sensors. 

 DESIGN ANALYSIS 

 Quad Software 

In terms of Quad software, we have currently not made many modifications to the system from a 

functional perspective. We have looked into modifying the way our system boots to allow for 

multiple different types of sensors as feedback, but to no success yet. one thing I think we really 

need to implement is a better system of testing. When we attempt to test any changes to the 

system it can sake several minutes and in turn slow development time significantly. One idea of 

making a wall plug to power the board and sensors but not the motors as a testing platform instead 

of the batteries. This would enable faster testing iterations and improve development speed 

significantly. Our solutions as of now seem to give us strengths in functionality but at the sacrifice 

of future development time increasing. this is due to hardware acceleration being costly (in terms 

of time) to modify and test as opposed to a software solution. 

 Controls 

As described in the Proposed Design section, the plan is to implement a nonlinear control in a 

finite number of linearized segments. This solution will have more precision than the existing PID 

controllers by computing control signals directly from the theoretical dynamics of the quad. This 

model will use a very precise representation of the quad obtained from planned work in system 

identification. To emphasize the point from above, this approach allows for higher precision - and 
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thus speed - than a PID implementation at the cost of being more difficult to configure when the 

quad changes and having a smaller range of operation if not enough linear segments are included. 

 Ground Station 

We currently have a robust framework and backend with a bare-bones GUI implemented for 

controlling a single quadcopter. Moving forward we plan on using the backend only modifying 

what is needed to implement safety features for multiple quads and fix any bugs we find. However, 

we will focus heavily on GUI development and making our platform one that is extremely easy to 

work with for demos and research. As defined in 1.6.2 we plan on adding real time flight data 

transmission, redesigned GUI, and improved multiple object tracking capabilities. Each of these 

parts will either make research easier to use, take less time to collect data, better review the data 

gathered, and allow for more complicated and impressive demos. 

 Continuous Integration 

Integration of new features into the system is done through a series of tests ran automatically after 

every commit in the online Git repository. Tests are written in scripting programming languages 

such as Perl or Python. The merge request merge is unlocked upon successful run of the test 

scripts. MicroCART Simulator (MCS) will be a virtual environment for the current virtual 

quadcopter. Currently, the MCS is in the early stage of development and it is dependent on the 

successful completion of the quadcopter flight model description. Once completed, we will be able 

to simulate virtual flight and thus test the controls software along with our current simple software 

test. 
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3 Testing and Implementation 

 INTERFACE SPECIFICATIONS 

The top-level system includes the camera system, the ground station, and the quad. Both the 

camera system and quad interface to the ground station. The ground station relays messages 

between the camera system, the quad, and the user. It is necessary for the ground station to relay 

input to the quad ~100 times per second, and the latency must be less than 10 ms. Onboard the 

quad, the software interfaces to the sensors and motors through the FPGA hardware design. This 

hardware design uses memory-mapped peripherals to link the processor and external devices. 

These interfaces need to be low-latency, with the motor output and sensor data being updated 

about 200 times per second (< 5 ms of latency). 

 HARDWARE AND SOFTWARE 

Testing the system involves hardware, software, and integration testing. The hardware tests run in 
simulation automatically by the continuous integration system, though there are additional tests 
that must be run manually, on the physical quad system. The simulated tests require Xilinx Vivado, 
the FPGA design/simulation environment. The software also has tests that are part of the 
continuous integration system. These tests require a C/C++ compiler, QT to compile the ground 
station UI, and a machine to run them on. Integration tests consist of running the quad and seeing 
if it flies correctly. In theory, if any piece is broken, the quad should not be able to fly. Integration 
tests require the camera system, the ground station, a Wi-Fi-bridge, and the quad. 

 FUNCTIONAL TESTING 

 Hardware 

The hardware design includes the wiring and components, as well as the FPGA design. The FPGA 

design consists of many IP blocks attached to the fixed portion of the FPGA, some of which are 

custom built for our project. The vendor supplied components are assumed to be well tested. The 

custom blocks are tested using a combination of simulation tests, and software projects. 

The electrical components and their wiring are a potential failure point for the quad and are not 

easily tested automatically. Each component and the requisite wiring to make it function is tested 

by a flight, operating these items requires a person to be present. There are unit-functional-tests in 

the project that a user can use to test a single sensor or other device without making intentional 

use of other devices. To mitigate the risks associated with wiring in a vehicular platform, we have 

opted to use locking connectors in our design. These reduce the risk of in-flight disconnection, and 

reduce the maintenance required. 

The simulation tests for the custom IP cores test the core functions of the module, without the 

logic that provides the software interface. These tests can catch and identify behavioral bugs in the 

module’s logic. The software application tests use hardware designs that have as few blocks as 

possible to test the full functionality of the custom IP block. The general format is that the 

application asks the user to attach any needed wires, then generates some input for the input 

blocks, or triggers the output blocks to generate, then evaluates the result. These tests can catch a 

broader range of errors, but are less capable of identifying the source, and cannot be as easily 

automated. 
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 NON-FUNCTIONAL TESTING 

Due to the nature of this project, functional and non-functional testing often overlaps in nature 
and scope. While a 5ms control loop time seems like a non-functional requirement, this level of 
speed for control loops is necessary to keep the quad in the air. Our intent is to allow others to use 
our solution as a base to modify to their needs, which also makes internal design quality and 
documentation a functional requirement. 

 PROCESS 

 

Figure 3-1 Iterative Testing Process 

 Quad Hardware and Software 

The quad hardware and software are tested both together and separately. Each has unit tests that 

test specific portions of the system (communications packet format, PWM output timing) and can 

be tested together by testing the flight-capability of the quad. The hardware unit tests are done 

with VHDL testbenches under simulation in Xilinx Vivado. These can be run automatically and 

have scripts that can generate a failure if the simulation reports a problem. The quad software has 

built in test cases that can be used if the quad software is compiled as a test build. Doing this 

removes the dependency on the hardware of the FPGA design and allows the tests to be run on any 

machine. In addition to these tests, there are single-application, minimally integrated tests that 

allow a user to run a test that includes software and hardware, but only as needed for a specific 

subsystem (such as checking that the software can read IMU data). 

 Controls 

To test a control system, there are basically 2 methods: simulate the design, and run it on the real 

system. Simulating the design is safer but requires an accurate model of the quadcopter which is 

built on multiple physics-based equations. Running the controller on the real system does not 

require a model of the quad, but if the controller does not act as expected or if the actual system 

differs greatly from the model the controller is based on then the system may fail, sometimes 

catastrophically. We strive to do as much testing of the controller in simulation as we can, using 

tools such as Matlab, and take the appropriate safety measures (tether and maintaining a safe 

distance) when we do need to fly the quad. 

 Ground Station 

Due to the stability of the backend and VRPN setup already present in the ground station code, no 

large changes to the overall functionality of the backend are intended to be made. Instead, pre-

existing and pre-tested basic commands are to be used in any and all extended functionality 

involving communication with the quad. This allows testing for the Ground Station backend code 

to be verified via simple system performance tests with a predetermined stable build on the quad. 

Unit Tests 
Integration 

Tests 

System 
Complete

! 
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Frontend changes to the UI and their effects are readily and easily determined due to the visibility 

of the UI and changes to the UI code in the QTCreator framework and can thus be verified as such. 

 RESULTS 

 Quad Hardware 

The quadcopter’s hardware has encountered several failures and minor problems. During our initial 

demonstration, we had a power failure to the IMU due to faulty/loose wiring. None of the current 

team considered that the wiring might be loose, and the debugging process took a long time. In the 

end, we ran the demy by unplugging and re-plugging the power cable to the IMU. As we developed 

hardware tests, we encountered some minor problems in the PWM capture and generation 

timings. These resulted in small errors (ranging from 1 to 18 clock cycles) that would not have been 

noticeable in the integrated system but were nonetheless an error. All discovered errors in the tests 

have been resolved. The biggest problem with the hardware testing has been integrating it into the 

CI framework. This required ETG to update/reconfigure the machine used for automated testing. 

 Controls 

Our tests of the quad’s PID controller have been successful, though we have not had many practical 

flight tests. Our demonstration at the ECpE scholars fair was generally a success, barring a delay 

due to electrical failure.  

The previous MicroCART team worked to create an operational LQR controller that would be 

usable as an alternative controller for the quadcopter. While they were largely successful in the 

completion of its design, hardly any actual testing has been completed on the new controller. We 

are taking steps to reduce risk to the quadcopter in the event that the LQR controller does not 

function by first attempting to test it using a simulator and by observing if its behavior in Matlab 

matches the behavior we expect from it when given specific inputs. Ultimately, the usefulness of 

this approach is somewhat limited due to uncertainty surrounding the accuracy of the model 

quadcopter in the simulator and the equations used to model the quadcopter’s behavior. If there is 

enough error in our model, then we may be unable to catch errors in our controller until we are 

able to perform tests on the physical quadcopter.  

 Ground Station 

Currently, the Ground Station has issues sending large packets while still maintaining performance 

standards. This is due to insufficient levels of bandwidth available to send data during a standard 

control loop. This will eventually cause problems as transferring additional flight data during 

runtime (thereby satisfying the real time transfer of flight data requirement) will require larger or 

more packets to be sent. In order to mitigate this, it will become necessary to run tests on the 

quad’s and ground stations UART connection to determine the maximum amount of data that can 

realistically be transferred while still maintaining performance and runtime standards, and then 

utilize this data to send an optimal size/number of packets per control loop. 
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4 Closing Material 

 CONCLUSION 

Overall, the purpose of this project is to provide a stable and accessible research platform for 

graduate students to test their controls and embedded systems algorithms, as well as be a 

demonstration piece to show in departmental demos. In order to create as useful a platform as 

possible, the best course of action is to continue increasing the stability and dependability of the 

features that already exist on the quad, as well as introduce key new features that are necessary for 

researchers and demonstrators to complete their work. Maintaining focus on these key areas will be 

essential for creating an effective and useful research platform for many graduate classes to come. 

 APPENDICES 

Project Repository: https://git.ece.iastate.edu/danc/MicroCART 
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