

Team #20

Client/Advisor

 Dr. Phillip Jones

Team Members

Tony Bertucci - Ground Station Lead

Sarah Koch - Controls Lead

Tina Li - Quad Software Lead

Nina Moriguchi - Flight Simulation Lead

James Talbert - Hardware Lead

Team Email

sdmay19-20@iastate.edu

Team Website

http://sdmay19-20.sd.ece.iastate.edu

Revised: Nov. 29 / Version: 2.0

MicroCART 2018-2019

DESIGN DOCUMENT

SDMAY19-20 i

Table of Contents

1 Introduction 1

 Acknowledgement 1

 Problem Statement 2

 Problem 2

 Operational Environment 2

 Intended Users and Uses 2

 Assumptions and Limitations 3

 Assumptions 3

 Limitations 3

 Expected End Product and Deliverables 3

 Quad Hardware and Software 3

1.6.1.1 Vivado Upgrade Testing 3

1.6.1.2 Second Quad 3

1.6.1.3 Quad Hardware Upgrade 4

1.6.1.4 Quad Software Upgrade 4

1.6.1.5 Power Regulator PCB Board 4

1.6.1.6 Sensor Data Sent in Real Time 5

 Ground Station 5

1.6.2.1 Transmission of Flight Data in Real Time - Prototype by January 1, 2019. Final by

May 1, 2019 5

1.6.2.2 Updated GUI for Flight Data Information - Prototype by January 1, 2019. Final by

May 1, 2019 5

1.6.2.3 Multiple Object Interaction Capabilities - Prototype by March 1, 2019. Final by

May 1, 2019 5

 Controls Systems 5

1.6.3.1 Model Linearization and LQR Controllers 5

1.6.3.2 System Parameterization Instructions 6

 Continuous Integration 6

1.6.4.1 Quad Simulator 6

1.6.4.2 Upgrade Testing Framework 6

1.6.4.3 Automated Testing for Controls Output 6

 Documentation 6

SDMAY19-20 ii

 Demos 7

2 Specifications and Analysis 8

2.1 Proposed Design 8

 Overview 8

 Quad Hardware and Software 9

 Controls 10

 Ground Station 10

 Continuous Integration 11

 Quad Software and Tests 11

 Design Analysis 11

 Quad Software 11

 Controls 11

 Ground Station 12

 Continuous Integration 12

3 Testing and Implementation 13

 Interface Specifications 13

 Hardware and software 13

 Functional Testing 13

 Hardware 13

 Non-Functional Testing 14

 Process 14

 Quad Hardware and Software 14

 Controls 14

 Ground Station 14

 Results 15

 Quad Hardware 15

 Controls 15

 Ground Station 15

4 Closing Material 16

 Conclusion 16

 Appendices 16

 References 16

SDMAY19-20 iii

List of Figures

Figure 1-1 MicroCART quadcopter 1

Figure 2-1 Top-level System Diagram 8

Figure 2-2 Quadcopter System Diagram 9

Figure 3-1 Iterative Testing Process 14

List of Tables

Table 1-1 Parts Order for second Quad 4

SDMAY19-20 iv

Definitions

Term Definition

CLI Command line interface

Continuous

Integration
automated process of running tests on every commit to the repository

Demo Short for demonstration; this is one of the deliverables of the project: a

demonstration of the quad’s capabilities, for example, doing a backflip

with the quad, finding an object and following it, communicating with a

second quad to perform flight patterns

GPS Global Positioning System; space-based radio navigation system using

satellites to determine position; proposed to find position (x, y) when

not in the lab using the VRPN system
Ground station The application that runs on a host computer that communicates with

the quad via a Wi-Fi connection and sends it coordinates to the quad
GUI Graphical user interface

IR Infrared wavelengths of light longer than visible light; used in the VRPN

system to determine the position of the quad
LIDAR Light Detection and Ranging; this is a system for determining the

altitude (z) of the quad using the onboard sensor

Optical Flow system using pattern of motion of objects, surfaces, and edges caused by

the relative motion between the and the scene to determine position;

used by the quad to calculate position (x, y) when not in the lab using

the VRPN system

PID Proportional-integral-derivative control system; standard control

algorithm used on the quad
Quad Short for quadcopter; this is the hardware platform we use in this

project

Setpoint in a control system, the target value for an essential variable
VRPN [1] Virtual-Reality Peripheral Network; this is the system used to determine

the position (x, y, z) and orientation (φ,θ,ψ) of the quad in the lab using

a set of 12 stationary cameras and an IR transmitter on the quad

SDMAY19-20 1

1 Introduction

Microprocessor Controlled Aerial Robotics Team or MicroCART project is centered around the

development of a quadcopter (see Error! Reference source not found. below) and tracking s

ystem. This project has been in development since 1998 and the current system has been passed

down since 2006. The project aims to create a stable and easy to use platform for researching

control theory. The quadcopter flies primarily in the Distributed Sensing and Decision Making

Laboratory within a twelve camera infrared tracking system.

Figure 1-1 MicroCART quadcopter

 ACKNOWLEDGEMENT

MicroCART is a project that is assisted by graduate students working in controls under Dr. Phillip
Jones. As this is an ongoing project, previous team members will also be providing help in
understanding the current system. As such, we would like to acknowledge the assistance that has
been and will be provided by:

● Matthew Cauwels

● Robert Buckley

● Matt Rich

● Dr. Phillip Jones

● Dane Larson

● Matthew Kelly

● Austin Rohlfing

● Eric Middelton

SDMAY19-20 2

 PROBLEM STATEMENT

We will improve upon an existing platform that is used for research in controls and embedded

systems and for departmental demos. The platform will be improved by adding increased, reusable

testing of all systems, adding documentation to increase the speed for new users to get started, and

by adding new system features.

 Problem

The MicroCART platform designed in previous years had many flaws that hindered its use for

research and demo purposes. The previous platform failed to familiarize the user(s) of the system

in a time horizon that would make it viable for research. This is because the system did not have

ample documentation available for the users of the system to learn about the platform and its uses.

From the viewpoint of a user running demos the area within the VRPN system the platform as it

stood is most stable when confined to flying within the VRPN system as the optical flow navigation

cannot hold position during flight. This means that the areas available to the quadcopter for demos

can only utilize the small amount of space in the lab for a demo. Lastly, the quadcopter is

controlled using a PID controller that requires logical guessing and checking to tune, we now have

a new linear controller that can be computed faster and be tuned around multiple points on the

nonlinear model.

 OPERATIONAL ENVIRONMENT

In order to fly using the VRPN software for position and orientation data, the quad must be inside

of a small area (less than 10 m2) inside of Coover 3050. This lab is designed to cause very few

environmental impacts on the quadcopter. Through the use of ventilation, window shades, and

Coover’s heating and air conditioning, the lab has a nearly constant light and temperature with

little to no accumulated dust to affect air quality.

Additionally, the project relies on two Linux computers. One is used to control the ground station

software and the other contains build tools for the FPGA on the quadcopter itself. This provides a

platform for development that is consistent across team members and easier to demo as there are

not issues with building or ensuring correctness of the various communication aspects used for the

project.

 INTENDED USERS AND USES

The primary set of end users is composed of future MicroCART members and controls graduate

students at Iowa State. We also have demonstrations for prospective students, someone from the

two categories (the user) will be running the demo for them (the audience). This means that the

users can be assumed to have competence in using multiple forms of programs (for example, either

GUI or CLI) and in reading general technical documentation.

The other goal listed above regards the modular implementation of new control algorithms as a

research opportunity for graduate students. These users have three primary needs from our

product. The first is a robust and reliable system to decrease variation in test results. This includes

having sturdy quad hardware, low communication latency, and a bug-free user interface. The

second need is to have modular software with complete documentation to allow for them to alter

the implementation themselves, without the need for significant system rework or intervention of

the MicroCART design team. Finally, these students will need the data from the system

SDMAY19-20 3

characterization in order to form their models. This includes information about mass, moments of

inertia, motor resistances, rotor areas, and many other properties that determine the true behavior

of the quadcopter. There is also a need to make sure that any new features are documented clearly

so that the next group of students that add features will be able to ramp up quickly.

 ASSUMPTIONS AND LIMITATIONS

 Assumptions

● Our VRPN camera system as it exists provides sufficiently accurate position data

● Our VRPN camera system as it exists provides sufficiently frequent updates

● The quadcopter will be used within the camera system

 Limitations

● The quadcopter must use a wireless link to the ground station

● Accuracy of onboard sensors (e.g. optical flow, LIDAR, IMU, GPS)

● Latency and range of the wireless link between the quadcopter and the ground station

● The quadcopter must be physically tethered to the lab floor

 EXPECTED END PRODUCT AND DELIVERABLES

The quadcopter system consists of three major subsections: the quadcopter hardware/software, the

ground station, and the control systems. Each of the subsections is essential to meet the desired

objectives and fulfill requirements. Documentation and demos are also a major deliverable for our

project and will be discussed.

 Quad Hardware and Software

1.6.1.1 Vivado Upgrade Testing

The entire quad software platform relies on the Xilinx toolchain. The software we were using to

develop the Quad software is the Xilinx toolchain. Specifically, XPS, which is known to be a very

non-user friendly and dated piece of software. One of the major goals of this project was to

transition to the new and improved Vivado to program the FPGA hardware. In addition, we added

unit tests for the hardware modules in simulation as part of our continuous integration pipeline.

1.6.1.2 Second Quad

Our client advisor requested that we develop a second quad for available flight. The difficulties in

building a second quad revolve around the lack of documentation of parts used on the quad, along

with the availability of the previous generation of parts. The new quad needed to be able to run the

same software on a different set of hardware.

SDMAY19-20 4

Table 1-1 Parts Order for second Quad

1.6.1.3 Quad Hardware Upgrade

The client has requested we upgrade the quads to the latest Zybo board that includes a

connection for a pi camera. The current quads have many long wires and loose

connections that are potential points of failure. Our team will create a custom pcb board

to replace those connections, as well as install the newer zybo boards.

1.6.1.4 Quad Software Upgrade

Currently the quad can only fly reliably within the VRPN Camera system. By integrating

the GPS and improving controls, a quad that will reliably fly outside will be aimed for. The

improved communication and multi-client capability developed last year opens up the

possibility of networking and quad coordination. To take advantage of the newer zybo

boards and cameras the client requested, a version of Linux with OpenCV, to be run on

the second processor on the board, will be explored. Software surrounding these new

functionalities will be developed.

1.6.1.5 Power Regulator PCB Board

The PCB will monitor battery usage and make sure that the user is alerted when battery

power is low, and that the quad lands whenever battery power is too low. It will also make

SDMAY19-20 5

sure the battery usage is efficient as possible, and no more power than necessary is drawn

when the quad is idle.

1.6.1.6 Sensor Data Sent in Real Time

Because the quad now uses Wi-Fi instead of Bluetooth, it is possible to explore sending

sensor data in real time rather than logging sensor data and sending it after the quad

lands. The user should explain what type of data they want even during mid-flight, and

the quad should be able to send that data back to the ground station immediately.

 Ground Station

1.6.2.1 Transmission of Flight Data in Real Time - Prototype by January 1, 2019. Final by May 1,

2019

The communication standard currently setup between the Ground Station and the quad supports

the transmission of flight data and performance information after a flight has completed. Due to

the amount of information being transferred, this process usually takes a considerable amount of

time to complete. We would like to improve the communication occurring between the quad and

the Ground Station to support the transmission of flight data in real time. This will improve the

quad’s status as a research platform by allowing for easy and timely analysis of flight and controls

data.

1.6.2.2 Updated GUI for Flight Data Information - Prototype by January 1, 2019. Final by May 1,

2019

Currently, the GUI does not support displaying flight data to the user in real time as it arrives from

the quad. The GUI will be updated to include a display for flight data that the user can see, as well

as interact with to choose the types of data they wish to be seeing and recording. This will allow

users to have a high level of control over the type and amount of data they are seeing during flight

time.

1.6.2.3 Multiple Object Interaction Capabilities - Prototype by March 1, 2019. Final by May 1, 2019

Currently the ground station supports having multiple quads connected at the same time. In order

to maintain a safe environment, both for observers and for the quads, the ground station will be

improved to include position and orientation analysis for all connected quads in order to ensure

collisions between objects connected to the ground station do not occur. This allows for a higher

level of safety when conducting controls experiments involving multiple quads, as well as improve

the expected lifetime of components and quads.

 Controls Systems

1.6.3.1 Model Linearization and LQR Controllers

The primary deliverables of this year’s team were a modular linearization of the system model and a

pair of LQR controllers. The linearization is a script that uses symbolic MATLAB derivation of the

nonlinear model provided by Matt Rich in [1]. This allows a future user to change the nonlinear

SDMAY19-20 6

model and immediately recompute the system linearization. Similarly, the linearization is also

dynamic on the measured system parameters, so no further work needs to be done to account for

potential future changes of physical properties (e.g. using bigger rotors or a frame with a greater

mass).

1.6.3.2 System Parameterization Instructions

Because there are now two quadrotors, it is more important than ever to be able to measure and

track the physical properties of each quadcopter. As such, the controls team aggregated parameter

measurement procedures from both Rich’s [1] and McInerney’s [4] research, as well as from un-

versioned documentation from the previous year’s team. These were formed into a series of four

parameter identification instruction documents, written in Markdown and stored on git, that

contained straightforward instruction, consistent variable usage, and (where necessary) example

MATLAB scripts. Additionally, a Markdown document was created to track all relevant parameter

values and instruction sets.

 Continuous Integration

1.6.4.1 Quad Simulator

The quad simulator models a virtual flight dynamics environment for various flight tests. The

current established model in the simulator does not model rotor dynamics; however, it still offers a

reliable platform for performing sanity checks of the changes in controls and quad software. The

current simulator uses a slightly modified version of the actual quadcopter controls. The simulator

also offers input and output through sockets which enables control to be running outside of the

simulator. Our team will focus on improving the simulator model and integrating the simulator

with the automated environment of GitLab.

1.6.4.2 Upgrade Testing Framework

Continuous Integration is the system that tests changes to code using the virtual quadcopter

software. To make the tests more standardized and provide more flexibility in writing the tests, the

tests were ported from a custom barebones testing framework to a standard testing framework,

Unity [5]. This provides a fully developed set of testing functions that can be used by future teams.

We plan to also increase test coverage and write tests for new features.

1.6.4.3 Automated Testing for Controls Output

We plan on creating a test that would gather information about the controls output in real time,

then get the actuator data from the simulator and make sure that the two points match.

 Documentation

The year before, many areas of the code, especially those relating to ground station and quad

software, were lacking documentation. The ground station contains four main components that are

separated well but adding functionality was not explained nor is it mentioned that this is custom

communication between the ground station and quad. The quad software is designed in a way that

makes it so external directories must be used in build tools and there is also no explanation of the

hardware running on the quad. Last year’s team made it their goal to have documentation for all

existing demos, documentation consistent in all code, and documentation for the research done

during their time on the team. To follow up on that goal, our team will continue adding

documentation. This year, the areas of controls model and simulation, ground station, the CI

Testing Framework, along with pure hardware plans need improvement and organization.

SDMAY19-20 7

 Demos

As one purpose of this project is to showcase the talents within this department, new demos

needed to be developed to showcase yearly changes. These demos are performed to controls classes

as well as to undergraduate students. We plan to implement the following major demos:

1. Have a quad that tracks an object on the ground, or in air, and maintains a set distance

away from it.

2. Have multiple quads perform synchronous movements

3. Have multiple types of quads running at the same time flying together.

SDMAY19-20 8

2 Specifications and Analysis

2.1 PROPOSED DESIGN

 Overview

At the highest level, the proposed system consists of three parts: the quadcopter, the ground-

station, and the camera-based object tracking system. The way these systems communicate is

shown below.

Figure 2-1 Top-level System Diagram

Each of these systems is of course made of up various internal subsystems. The object tracking

system is a black box, but the ground station and quadcopter are developed by the team. The object

tracking system uses an array of infrared cameras to track markers on the quad’s frame, it then

streams the position and orientation data to the ground station, which in turn distributes the

useful elements to the quadcopter over a Wi-Fi link [2]. The quadcopter uses this data in

combination with internal sensors and setpoints from the ground station to control its position,

which the cameras can observe.

SDMAY19-20 9

 Quad Hardware and Software

Figure 2-2 Quadcopter System Diagram

The quadcopter is built from a Flamewheel 450 airframe, with a Zybo Z7020 control board. This

board includes a Xilinx Zynq Z7020 FPGA. On board the quad are also a Wi-Fi bridge, an RC

receiver, an optical flow sensor, a LIDAR sensor, and an Inertial Measurement Unit (IMU). The

FPGA includes the hardware needed to interface to all of these devices, and to generate PWM to

control the Electronic Speed Controllers (ESCs) for the motors. The hardware design for the FPGA

is implemented in Xilinx Vivado.

Within the FPGA, a processor core runs a baremetal (no operating system) program that runs a

continuous loop:

• Read Sensor Data

• Process/Filter Sensor Data

• Run Control Algorithm

• Output Actuation

• Log data

Here, the input from the RC controller and the ground station are considered sensor values. The

RC receiver has 6 channels, two of these channels are used for configuration (active/killed and

manual/autonomous) and 4 are used in manual mode for piloting the craft. When in manual mode,

the quad does not use any data from the ground station and uses only internal sensors to attempt

to follow user commands (roll, pitch, yaw, throttle). In this mode, the quad will drift around the

room at speeds dependent on the pilot, the calibrations of the sensors, and any air drafts in the

room.

SDMAY19-20 10

 Controls

The controls for the quad are currently implemented using nested proportional-integral-derivative

(PID) controllers. There is a set of PIDs for each of the three Cartesian components of position (x,

y, z) and one for yaw (rotation around the z-axis). These were chosen because they achieve a very

configurable approach to quadcopter controls, as modifications to the quad can be accounted for

by simply adjusting the various PID constants.

The problem with PID controllers is that they contain almost no information about the system

physics, and once tuned to reasonable values control cannot be reliably improved except through

modifying the coefficients by hand to meet qualitative judgements. The primary change we wanted

was to create a controller based on a physical model of quadrotor actuation, which can serve as

non-trivial starting point for future controls research on this platform. Specifically, the plan was to

implement an LQR controller capable of flying the quad to prove the correctness of our model and

its computed linearization.

 Ground Station

The overall architecture of the various components for the ground station will stay consistent but

the network architecture, as well as backend functionality, will be improved. The ground station is

currently well-designed allowing for a backend server, a frontend for clients to use for

communication with the backend, and various clients such as the GUI or CLI (more details on each

interface can be found later in the report). The benefits of the system as it stands is that the

communication and server are kept with the backend so that clients do not need added complexity

to deal with the different objects that are connected. The frontend provides a simple interface that

clients can pass data to and get a response as needed. This again hides the backend implementation

from the clients and this interface is simplified and provides all functionality that the quad and

backend have to offer.

The current communication standard for the MicroCART system allows for formatted packets to be

sent between the ground station and the quad both during flight time for regular flight instructions

as well as after flights for transmitting flight data logs. The ground station (and therefore, the quad)

will be updated so that it will request and receive flight data during operation over the UART

connection currently used to send instruction data. This information will then be formatted and

displayed to the user on an updated GUI. The user will also be able to choose the type(s) of

information they want the ground station to display. This change allows for a higher ease of use of

the quad as a research platform as the types of data displayed will be determined by the user.

The next major change involves the integration of safety features regarding the control of multiple

objects into the backend. In addition to maintaining the individual position, velocity and

orientation data of each of the trackables connected to the ground station, the ground station will

also conduct additional checks to ensure dangerous scenarios such as collisions between quads do

not occur. . This tracker will loop through all objects and provide them each with position

information assuming they are using the VRPN system. This will also bring about changes in the

GUI which will consist of a means of warning the user that dangerous conditions will/have

occur/occurred.

SDMAY19-20 11

 Continuous Integration

The original Continuous Integration (CI) system ran a suite of tests that performed checks on parts

of the quad software, using a set of sockets to simulate the drivers used on the quad. It relied on a

basic testing framework, created by a previous team member, consisting of a single assert function.

To address these limitations, we plan to add an additional part to the testing procedure to test the

controls themselves. This would involve interfacing with a flight simulator and connecting the

controls used on the quadcopter to the simulator, with the output of the simulator connected as

inputs to the control model and the outputs of the control model connected to the inputs of the

simulator to provide throttle levels to the motors of the quad in simulation. Automated tests that

integrate with this simulator will also be made to test the ground station. In addition, we plan to

replace the testing framework currently in use with a more powerful C testing library, Unity [5]. To

do this we will work to convert the existing tests to use Unity.

 Quad Software and Tests

To improve debugging, we want to send sensor data and actuator results in real time. We are also

giving the user the option to select which sensor data they want information from. The sensor data

task has two parts : program the quad to send data in real time, and validate that the data has been

sent quickly enough. The more sensor data that is sent, the more it will slow down the quad. To

test how much sensor data can be sent at once, our approach is to log the latency and calculate it

from there. As for sending the sensor data, we’ve tried two approaches: using the existing logging

framework, and sending data using that framework, or just sending the sensor data directly right

after data comes in, using the uart driver. Another possible approach is to create a thread that

continuously polls the output from various sensors.

 DESIGN ANALYSIS

 Quad Software

In terms of Quad software, we have currently not made many modifications to the system from a

functional perspective. We have looked into modifying the way our system boots to allow for

multiple different types of sensors as feedback, but to no success yet. one thing I think we really

need to implement is a better system of testing. When we attempt to test any changes to the

system it can sake several minutes and in turn slow development time significantly. One idea of

making a wall plug to power the board and sensors but not the motors as a testing platform instead

of the batteries. This would enable faster testing iterations and improve development speed

significantly. Our solutions as of now seem to give us strengths in functionality but at the sacrifice

of future development time increasing. this is due to hardware acceleration being costly (in terms

of time) to modify and test as opposed to a software solution.

 Controls

As described in the Proposed Design section, the plan is to implement a nonlinear control in a

finite number of linearized segments. This solution will have more precision than the existing PID

controllers by computing control signals directly from the theoretical dynamics of the quad. This

model will use a very precise representation of the quad obtained from planned work in system

identification. To emphasize the point from above, this approach allows for higher precision - and

SDMAY19-20 12

thus speed - than a PID implementation at the cost of being more difficult to configure when the

quad changes and having a smaller range of operation if not enough linear segments are included.

 Ground Station

We currently have a robust framework and backend with a bare-bones GUI implemented for

controlling a single quadcopter. Moving forward we plan on using the backend only modifying

what is needed to implement safety features for multiple quads and fix any bugs we find. However,

we will focus heavily on GUI development and making our platform one that is extremely easy to

work with for demos and research. As defined in 1.6.2 we plan on adding real time flight data

transmission, redesigned GUI, and improved multiple object tracking capabilities. Each of these

parts will either make research easier to use, take less time to collect data, better review the data

gathered, and allow for more complicated and impressive demos.

 Continuous Integration

Integration of new features into the system is done through a series of tests ran automatically after

every commit in the online Git repository. Tests are written in scripting programming languages

such as Perl or Python. The merge request merge is unlocked upon successful run of the test

scripts. MicroCART Simulator (MCS) will be a virtual environment for the current virtual

quadcopter. Currently, the MCS is in the early stage of development and it is dependent on the

successful completion of the quadcopter flight model description. Once completed, we will be able

to simulate virtual flight and thus test the controls software along with our current simple software

test.

SDMAY19-20 13

3 Testing and Implementation

 INTERFACE SPECIFICATIONS

The top-level system includes the camera system, the ground station, and the quad. Both the

camera system and quad interface to the ground station. The ground station relays messages

between the camera system, the quad, and the user. It is necessary for the ground station to relay

input to the quad ~100 times per second, and the latency must be less than 10 ms. Onboard the

quad, the software interfaces to the sensors and motors through the FPGA hardware design. This

hardware design uses memory-mapped peripherals to link the processor and external devices.

These interfaces need to be low-latency, with the motor output and sensor data being updated

about 200 times per second (< 5 ms of latency).

 HARDWARE AND SOFTWARE

Testing the system involves hardware, software, and integration testing. The hardware tests run in
simulation automatically by the continuous integration system, though there are additional tests
that must be run manually, on the physical quad system. The simulated tests require Xilinx Vivado,
the FPGA design/simulation environment. The software also has tests that are part of the
continuous integration system. These tests require a C/C++ compiler, QT to compile the ground
station UI, and a machine to run them on. Integration tests consist of running the quad and seeing
if it flies correctly. In theory, if any piece is broken, the quad should not be able to fly. Integration
tests require the camera system, the ground station, a Wi-Fi-bridge, and the quad.

 FUNCTIONAL TESTING

 Hardware

The hardware design includes the wiring and components, as well as the FPGA design. The FPGA

design consists of many IP blocks attached to the fixed portion of the FPGA, some of which are

custom built for our project. The vendor supplied components are assumed to be well tested. The

custom blocks are tested using a combination of simulation tests, and software projects.

The electrical components and their wiring are a potential failure point for the quad and are not

easily tested automatically. Each component and the requisite wiring to make it function is tested

by a flight, operating these items requires a person to be present. There are unit-functional-tests in

the project that a user can use to test a single sensor or other device without making intentional

use of other devices. To mitigate the risks associated with wiring in a vehicular platform, we have

opted to use locking connectors in our design. These reduce the risk of in-flight disconnection, and

reduce the maintenance required.

The simulation tests for the custom IP cores test the core functions of the module, without the

logic that provides the software interface. These tests can catch and identify behavioral bugs in the

module’s logic. The software application tests use hardware designs that have as few blocks as

possible to test the full functionality of the custom IP block. The general format is that the

application asks the user to attach any needed wires, then generates some input for the input

blocks, or triggers the output blocks to generate, then evaluates the result. These tests can catch a

broader range of errors, but are less capable of identifying the source, and cannot be as easily

automated.

SDMAY19-20 14

 NON-FUNCTIONAL TESTING

Due to the nature of this project, functional and non-functional testing often overlaps in nature
and scope. While a 5ms control loop time seems like a non-functional requirement, this level of
speed for control loops is necessary to keep the quad in the air. Our intent is to allow others to use
our solution as a base to modify to their needs, which also makes internal design quality and
documentation a functional requirement.

 PROCESS

Figure 3-1 Iterative Testing Process

 Quad Hardware and Software

The quad hardware and software are tested both together and separately. Each has unit tests that

test specific portions of the system (communications packet format, PWM output timing) and can

be tested together by testing the flight-capability of the quad. The hardware unit tests are done

with VHDL testbenches under simulation in Xilinx Vivado. These can be run automatically and

have scripts that can generate a failure if the simulation reports a problem. The quad software has

built in test cases that can be used if the quad software is compiled as a test build. Doing this

removes the dependency on the hardware of the FPGA design and allows the tests to be run on any

machine. In addition to these tests, there are single-application, minimally integrated tests that

allow a user to run a test that includes software and hardware, but only as needed for a specific

subsystem (such as checking that the software can read IMU data).

 Controls

To test a control system, there are basically 2 methods: simulate the design, and run it on the real

system. Simulating the design is safer but requires an accurate model of the quadcopter which is

built on multiple physics-based equations. Running the controller on the real system does not

require a model of the quad, but if the controller does not act as expected or if the actual system

differs greatly from the model the controller is based on then the system may fail, sometimes

catastrophically. We strive to do as much testing of the controller in simulation as we can, using

tools such as Matlab, and take the appropriate safety measures (tether and maintaining a safe

distance) when we do need to fly the quad.

 Ground Station

Due to the stability of the backend and VRPN setup already present in the ground station code, no

large changes to the overall functionality of the backend are intended to be made. Instead, pre-

existing and pre-tested basic commands are to be used in any and all extended functionality

involving communication with the quad. This allows testing for the Ground Station backend code

to be verified via simple system performance tests with a predetermined stable build on the quad.

Unit Tests
Integration

Tests

System
Complete

!

SDMAY19-20 15

Frontend changes to the UI and their effects are readily and easily determined due to the visibility

of the UI and changes to the UI code in the QTCreator framework and can thus be verified as such.

 RESULTS

 Quad Hardware

The quadcopter’s hardware has encountered several failures and minor problems. During our initial

demonstration, we had a power failure to the IMU due to faulty/loose wiring. None of the current

team considered that the wiring might be loose, and the debugging process took a long time. In the

end, we ran the demy by unplugging and re-plugging the power cable to the IMU. As we developed

hardware tests, we encountered some minor problems in the PWM capture and generation

timings. These resulted in small errors (ranging from 1 to 18 clock cycles) that would not have been

noticeable in the integrated system but were nonetheless an error. All discovered errors in the tests

have been resolved. The biggest problem with the hardware testing has been integrating it into the

CI framework. This required ETG to update/reconfigure the machine used for automated testing.

 Controls

Our tests of the quad’s PID controller have been successful, though we have not had many practical

flight tests. Our demonstration at the ECpE scholars fair was generally a success, barring a delay

due to electrical failure.

The previous MicroCART team worked to create an operational LQR controller that would be

usable as an alternative controller for the quadcopter. While they were largely successful in the

completion of its design, hardly any actual testing has been completed on the new controller. We

are taking steps to reduce risk to the quadcopter in the event that the LQR controller does not

function by first attempting to test it using a simulator and by observing if its behavior in Matlab

matches the behavior we expect from it when given specific inputs. Ultimately, the usefulness of

this approach is somewhat limited due to uncertainty surrounding the accuracy of the model

quadcopter in the simulator and the equations used to model the quadcopter’s behavior. If there is

enough error in our model, then we may be unable to catch errors in our controller until we are

able to perform tests on the physical quadcopter.

 Ground Station

Currently, the Ground Station has issues sending large packets while still maintaining performance

standards. This is due to insufficient levels of bandwidth available to send data during a standard

control loop. This will eventually cause problems as transferring additional flight data during

runtime (thereby satisfying the real time transfer of flight data requirement) will require larger or

more packets to be sent. In order to mitigate this, it will become necessary to run tests on the

quad’s and ground stations UART connection to determine the maximum amount of data that can

realistically be transferred while still maintaining performance and runtime standards, and then

utilize this data to send an optimal size/number of packets per control loop.

SDMAY19-20 16

4 Closing Material

 CONCLUSION

Overall, the purpose of this project is to provide a stable and accessible research platform for

graduate students to test their controls and embedded systems algorithms, as well as be a

demonstration piece to show in departmental demos. In order to create as useful a platform as

possible, the best course of action is to continue increasing the stability and dependability of the

features that already exist on the quad, as well as introduce key new features that are necessary for

researchers and demonstrators to complete their work. Maintaining focus on these key areas will be

essential for creating an effective and useful research platform for many graduate classes to come.

 APPENDICES

Project Repository: https://git.ece.iastate.edu/danc/MicroCART

 REFERENCES

[1] "Virtual Reality Peripheral Network," [Online]. Available: http://vrpn.org/. [Accessed 29

November 2018].

[2] Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,

IEEE Standard 802.11, 2012.

[3] M. Rich, "Model Development, system identification, and control of a quadrotor helicopter,"

Iowa State University Digital Repository, 2012.

[4] D. Wehr, "ESP8266 WiFi Latency Testing," 17 September 2016. [Online]. Available:

https://docs.google.com/document/d/1VU99wMgkqK2EgbNLdqrdhvj9iikfqk2gtUYQ367K5-

Q/edit#heading=h.s0og8emj18jx.

[5] I. McInerney, "Development of a multi-agent quadrotor research platform with distributed

computational capabilities," Iowa State University Digital Repository, 2017.

